• For Individuals
  • For Businesses
  • For Universities
  • For Governments
Coursera
  • Coursera Plus
  • Log In
  • Join for Free
    Coursera
    • Browse
    • Regression

    Regression Courses Online

    Master regression analysis for predictive modeling. Learn about linear, logistic, and polynomial regression techniques.

    Skip to search results

    Filter by

    Subject
    Required
     *

    Language
    Required
     *

    The language used throughout the course, in both instruction and assessments.

    Learning Product
    Required
     *

    Build job-relevant skills in under 2 hours with hands-on tutorials.
    Learn from top instructors with graded assignments, videos, and discussion forums.
    Learn a new tool or skill in an interactive, hands-on environment.
    Get in-depth knowledge of a subject by completing a series of courses and projects.
    Earn career credentials from industry leaders that demonstrate your expertise.
    Earn career credentials while taking courses that count towards your Master’s degree.
    Earn your Bachelor’s or Master’s degree online for a fraction of the cost of in-person learning.
    Complete graduate-level learning without committing to a full degree program.
    Earn a university-issued career credential in a flexible, interactive format.

    Level
    Required
     *

    Duration
    Required
     *

    Skills
    Required
     *

    Subtitles
    Required
     *

    Educator
    Required
     *

    Explore the Regression Course Catalog

    • Johns Hopkins University

      Regression Models

      Skills you'll gain: Regression Analysis, Statistical Analysis, Statistical Modeling, Data Science, Predictive Modeling, Probability & Statistics, Statistical Inference

      4.4
      Rating, 4.4 out of 5 stars
      ·
      3.4K reviews

      Mixed · Course · 1 - 4 Weeks

    • Duke University

      Linear Regression and Modeling

      Skills you'll gain: Regression Analysis, Data Analysis Software, Statistical Analysis, R Programming, Statistical Modeling, Statistical Inference, Correlation Analysis, Statistical Methods, Exploratory Data Analysis, Mathematical Modeling, Predictive Modeling

      4.8
      Rating, 4.8 out of 5 stars
      ·
      1.8K reviews

      Beginner · Course · 1 - 4 Weeks

    • Google

      Regression Analysis: Simplify Complex Data Relationships

      Skills you'll gain: Regression Analysis, Statistical Hypothesis Testing, Statistical Analysis, Advanced Analytics, Correlation Analysis, Data Analysis, Predictive Modeling, Statistical Modeling, Supervised Learning, Variance Analysis, Machine Learning Methods, Python Programming

      4.7
      Rating, 4.7 out of 5 stars
      ·
      515 reviews

      Advanced · Course · 1 - 3 Months

    • Unlock Access to 10,000+ courses with a subscription.

      Learn more
    • DeepLearning.AI

      Supervised Machine Learning: Regression and Classification

      Skills you'll gain: Supervised Learning, Jupyter, Scikit Learn (Machine Learning Library), Machine Learning, NumPy, Predictive Modeling, Feature Engineering, Artificial Intelligence, Classification And Regression Tree (CART), Python Programming, Regression Analysis, Unsupervised Learning, Statistical Modeling

      4.9
      Rating, 4.9 out of 5 stars
      ·
      28K reviews

      Beginner · Course · 1 - 4 Weeks

    • IBM

      Supervised Machine Learning: Regression

      Skills you'll gain: Supervised Learning, Regression Analysis, Machine Learning Algorithms, Machine Learning, Predictive Modeling, Classification And Regression Tree (CART), Statistical Modeling, Scikit Learn (Machine Learning Library), Feature Engineering, Pandas (Python Package), Performance Metric

      4.7
      Rating, 4.7 out of 5 stars
      ·
      731 reviews

      Intermediate · Course · 1 - 3 Months

    • Multiple educators

      Machine Learning

      Skills you'll gain: Unsupervised Learning, Supervised Learning, Machine Learning Methods, Classification And Regression Tree (CART), Artificial Intelligence and Machine Learning (AI/ML), Applied Machine Learning, Machine Learning Algorithms, Machine Learning, Jupyter, Data Ethics, Decision Tree Learning, Tensorflow, Scikit Learn (Machine Learning Library), Artificial Intelligence, NumPy, Predictive Modeling, Deep Learning, Reinforcement Learning, Random Forest Algorithm, Feature Engineering

      Build toward a degree

      4.9
      Rating, 4.9 out of 5 stars
      ·
      33K reviews

      Beginner · Specialization · 1 - 3 Months

    • Status: Free
      Free

      Stanford University

      Introduction to Statistics

      Skills you'll gain: Descriptive Statistics, Statistics, Statistical Methods, Sampling (Statistics), Statistical Analysis, Data Analysis, Statistical Modeling, Statistical Hypothesis Testing, Regression Analysis, Statistical Inference, Probability, Exploratory Data Analysis, Quantitative Research, Data Collection, Probability Distribution

      4.6
      Rating, 4.6 out of 5 stars
      ·
      4K reviews

      Beginner · Course · 1 - 3 Months

    • University of Washington

      Machine Learning: Regression

      Skills you'll gain: Regression Analysis, Predictive Modeling, Supervised Learning, Statistical Modeling, Applied Machine Learning, Predictive Analytics, Feature Engineering, Machine Learning, Statistical Methods, Python Programming, Data Manipulation, Linear Algebra, Algorithms

      4.8
      Rating, 4.8 out of 5 stars
      ·
      5.6K reviews

      Mixed · Course · 1 - 3 Months

    • University of Pennsylvania

      Finance & Quantitative Modeling for Analysts

      Skills you'll gain: Return On Investment, Financial Reporting, Capital Budgeting, Financial Statements, Financial Modeling, Mathematical Modeling, Statistical Modeling, Regression Analysis, Business Modeling, Income Statement, Financial Analysis, Risk Analysis, Cash Flows, Business Mathematics, Financial Planning, Corporate Finance, Predictive Analytics, Spreadsheet Software, Google Sheets, Microsoft Excel

      4.5
      Rating, 4.5 out of 5 stars
      ·
      17K reviews

      Beginner · Specialization · 3 - 6 Months

    • Google

      Google Advanced Data Analytics

      Skills you'll gain: Exploratory Data Analysis, Data Storytelling, Statistical Hypothesis Testing, Data Ethics, Data Presentation, Data Visualization Software, Sampling (Statistics), Regression Analysis, Feature Engineering, Data Transformation, Descriptive Statistics, Data Visualization, Tableau Software, Data Manipulation, Statistical Analysis, Probability Distribution, Statistical Methods, Applied Machine Learning, Object Oriented Programming (OOP), Data Analysis

      Build toward a degree

      4.7
      Rating, 4.7 out of 5 stars
      ·
      6K reviews

      Advanced · Professional Certificate · 3 - 6 Months

    • Rice University

      Linear Regression for Business Statistics

      Skills you'll gain: Statistical Hypothesis Testing, Regression Analysis, Statistical Analysis, Statistical Modeling, Statistical Inference, Business Analytics, Microsoft Excel, Estimation, Data Analysis, Data Transformation

      4.8
      Rating, 4.8 out of 5 stars
      ·
      1.4K reviews

      Mixed · Course · 1 - 4 Weeks

    Regression learners also search

    Regression Analysis
    Regression Models
    Linear Regression
    Logistic Regression
    Predictive Modeling
    Statistical Modeling
    Predictive Analytics
    Data Modeling
    1234…44

    In summary, here are 10 of our most popular regression courses

    • Regression Models: Johns Hopkins University
    • Linear Regression and Modeling : Duke University
    • Regression Analysis: Simplify Complex Data Relationships: Google
    • Supervised Machine Learning: Regression and Classification : DeepLearning.AI
    • Supervised Machine Learning: Regression: IBM
    • Machine Learning: DeepLearning.AI
    • Introduction to Statistics: Stanford University
    • Machine Learning: Regression: University of Washington
    • Finance & Quantitative Modeling for Analysts: University of Pennsylvania
    • Google Advanced Data Analytics: Google

    Frequently Asked Questions about Regression

    Regression is a statistical technique used in data analysis to model the relationship between a dependent variable and one or more independent variables. It is commonly used to predict or estimate the value of the dependent variable based on the values of the independent variables. In simpler terms, regression helps us understand how the change in one variable can affect the other variable(s). It is widely used in various fields, including economics, finance, psychology, and machine learning.‎

    To learn regression, you need to acquire the following skills:

    1. Statistics: Understanding statistical concepts such as mean, median, variance, and correlation is essential for regression analysis. Familiarize yourself with concepts like hypothesis testing, p-values, and confidence intervals.

    2. Mathematics: A solid foundation in calculus and linear algebra is crucial for regression analysis. Understanding concepts like derivatives, matrices, and vectors will help you grasp regression models more effectively.

    3. Programming: Proficiency in a programming language is necessary for implementing regression models. Python and R are commonly used languages in data science, which offer various libraries and packages for regression analysis.

    4. Data Analysis: Learning data manipulation and exploratory data analysis techniques are essential for regression. Gain skills in cleaning, transforming, and visualizing data using tools like pandas, NumPy, and matplotlib.

    5. Machine Learning: Regression is a machine learning technique, so having a basic understanding of machine learning algorithms and concepts like supervised learning, model evaluation, and overfitting is beneficial.

    6. Regression Models: Familiarize yourself with different regression models such as linear regression, polynomial regression, logistic regression, and ridge regression. Learn how to interpret and evaluate these models.

    7. Feature Selection: Understand methods to identify and select relevant features for regression analysis. Techniques like stepwise regression, LASSO, and principal component analysis (PCA) can help in determining the most important predictors.

    8. Model Evaluation: Learn how to assess the performance of your regression models using metrics like mean squared error (MSE), R-squared value, and adjusted R-squared. Cross-validation techniques like k-fold cross-validation are also valuable.

    9. Domain Knowledge: Having a basic understanding of the domain in which you are applying regression is advantageous. It helps in interpreting the results correctly and making informed decisions based on the analysis.

    10. Critical Thinking and Problem Solving: Developing strong analytical and problem-solving skills will aid you in analyzing data, selecting appropriate regression models, and interpreting the results accurately.‎

    With regression skills, there are various job opportunities in different industries. Some of the most common jobs that require regression skills include:

    1. Data Scientist: Regression analysis is an essential tool for data scientists to uncover relationships between variables and make predictions. They use regression to build models that provide insights and recommendations based on data analysis.

    2. Statistician: Statisticians utilize regression analysis to interpret data, identify trends, and make predictions. They work in a wide range of fields such as research, healthcare, government, finance, and marketing.

    3. Financial Analyst: Regression skills are highly valuable for financial analysts who need to understand and predict market trends, stock prices, and investment performance. Regression analysis helps them make informed decisions and develop models for forecasting.

    4. Market Research Analyst: Regression analysis is widely used in market research to evaluate consumer behavior, predict sales, and estimate market demand. Market research analysts employ regression models to analyze and interpret data for strategic decision-making.

    5. Business Analyst: Business analysts rely on regression analysis to identify patterns, relationships, and trends in data. They use this information to provide insights, optimize business processes, forecast sales, and improve organizational performance.

    6. Actuary: Actuaries apply regression analysis to calculate and assess risk in insurance and finance industries. They develop models to predict and manage risks related to life expectancy, insurance claims, and property damage.

    7. Operations Research Analyst: Regression skills are crucial for operations research analysts, who use statistical models to optimize processes and solve complex problems. Regression analysis helps them make data-driven decisions, improve efficiency, and increase profitability.

    8. Marketing Analyst: Marketers utilize regression analysis to understand consumer behavior, segment target markets, and predict customer preferences. Regression skills are essential for developing effective marketing strategies and measuring the impact of promotional activities.

    9. Epidemiologist: Regression analysis plays a significant role in epidemiology to study the relationships between risk factors, diseases, and health outcomes. Epidemiologists use regression models to identify the impact of various factors on disease occurrence and prevalence.

    10. Environmental Scientist: Regression skills are valuable in environmental science for analyzing and predicting the impact of environmental factors on ecosystems. Environmental scientists employ regression analysis to interpret data related to pollution, climate change, and biodiversity.

    These are just a few examples of the wide range of job opportunities that you can pursue with regression skills. The demand for regression expertise is growing rapidly, making it an excellent skill to acquire for various industries.‎

    People who are analytical, detail-oriented, and have a strong background in mathematics and statistics are best suited for studying Regression. Additionally, individuals who are interested in data analysis, predictive modeling, and making informed decisions based on data would find studying Regression beneficial.‎

    Here are some topics that are related to Regression that you can study:

    1. Simple Linear Regression: Understanding the basic concepts and techniques of simple linear regression, which involves predicting a dependent variable based on one independent variable.

    2. Multiple Linear Regression: Expanding upon simple linear regression, multiple linear regression involves predicting a dependent variable based on two or more independent variables.

    3. Polynomial Regression: Exploring the concept of polynomial regression, which allows for fitting a curved line to a dataset by including polynomial terms.

    4. Logistic Regression: Investigating logistic regression, which is used when the dependent variable is categorical, providing insights into predicting a binary outcome.

    5. Time Series Analysis: Examining time series analysis, which involves analyzing and predicting data points collected over a period of time using regression techniques.

    6. Ridge Regression: Delving into ridge regression, a technique that helps prevent overfitting by penalizing large or complex models.

    7. Lasso Regression: Understanding lasso regression, which aids in feature selection by shrinking coefficients and encouraging simpler models.

    8. Elastic Net Regression: Learning about elastic net regression, which combines both ridge and lasso regression techniques to improve model performance.

    9. Generalized Linear Models: Exploring generalized linear models, a broader framework that includes different regression models for various types of dependent variables (e.g., Poisson regression, exponential regression).

    10. Bayesian Regression: Diving into Bayesian regression, which incorporates prior knowledge into the regression model through Bayesian inference.

    These topics provide a solid foundation for understanding and applying regression techniques and can further enhance your knowledge in this area.‎

    Online Regression courses offer a convenient and flexible way to enhance your knowledge or learn new Regression is a statistical technique used in data analysis to model the relationship between a dependent variable and one or more independent variables. It is commonly used to predict or estimate the value of the dependent variable based on the values of the independent variables. In simpler terms, regression helps us understand how the change in one variable can affect the other variable(s). It is widely used in various fields, including economics, finance, psychology, and machine learning. skills. Choose from a wide range of Regression courses offered by top universities and industry leaders tailored to various skill levels.‎

    When looking to enhance your workforce's skills in Regression, it's crucial to select a course that aligns with their current abilities and learning objectives. Our Skills Dashboard is an invaluable tool for identifying skill gaps and choosing the most appropriate course for effective upskilling. For a comprehensive understanding of how our courses can benefit your employees, explore the enterprise solutions we offer. Discover more about our tailored programs at Coursera for Business here.‎

    This FAQ content has been made available for informational purposes only. Learners are advised to conduct additional research to ensure that courses and other credentials pursued meet their personal, professional, and financial goals.

    Other topics to explore

    Arts and Humanities
    338 courses
    Business
    1095 courses
    Computer Science
    668 courses
    Data Science
    425 courses
    Information Technology
    145 courses
    Health
    471 courses
    Math and Logic
    70 courses
    Personal Development
    137 courses
    Physical Science and Engineering
    413 courses
    Social Sciences
    401 courses
    Language Learning
    150 courses

    Coursera Footer

    Technical Skills

    • ChatGPT
    • Coding
    • Computer Science
    • Cybersecurity
    • DevOps
    • Ethical Hacking
    • Generative AI
    • Java Programming
    • Python
    • Web Development

    Analytical Skills

    • Artificial Intelligence
    • Big Data
    • Business Analysis
    • Data Analytics
    • Data Science
    • Financial Modeling
    • Machine Learning
    • Microsoft Excel
    • Microsoft Power BI
    • SQL

    Business Skills

    • Accounting
    • Digital Marketing
    • E-commerce
    • Finance
    • Google
    • Graphic Design
    • IBM
    • Marketing
    • Project Management
    • Social Media Marketing

    Career Resources

    • Essential IT Certifications
    • High-Income Skills to Learn
    • How to Get a PMP Certification
    • How to Learn Artificial Intelligence
    • Popular Cybersecurity Certifications
    • Popular Data Analytics Certifications
    • What Does a Data Analyst Do?
    • Career Development Resources
    • Career Aptitude Test
    • Share your Coursera Learning Story

    Coursera

    • About
    • What We Offer
    • Leadership
    • Careers
    • Catalog
    • Coursera Plus
    • Professional Certificates
    • MasterTrack® Certificates
    • Degrees
    • For Enterprise
    • For Government
    • For Campus
    • Become a Partner
    • Social Impact
    • Free Courses
    • ECTS Credit Recommendations

    Community

    • Learners
    • Partners
    • Beta Testers
    • Blog
    • The Coursera Podcast
    • Tech Blog
    • Teaching Center

    More

    • Press
    • Investors
    • Terms
    • Privacy
    • Help
    • Accessibility
    • Contact
    • Articles
    • Directory
    • Affiliates
    • Modern Slavery Statement
    • Manage Cookie Preferences
    Learn Anywhere
    Download on the App Store
    Get it on Google Play
    Logo of Certified B Corporation
    © 2025 Coursera Inc. All rights reserved.
    • Coursera Facebook
    • Coursera Linkedin
    • Coursera Twitter
    • Coursera YouTube
    • Coursera Instagram
    • Coursera TikTok