his course provides a solid foundation in Python for data science, focusing on NumPy, Matplotlib, Pandas, and a touch of machine learning. Learners will gain practical experience with essential data science tools, enhancing their ability to manipulate data, visualize it, and perform basic machine learning tasks. By the end of the course, students will be prepared to tackle more advanced data science topics with a strong understanding of how Python is used in real-world applications.



NumPy, Matplotlib & Pandas – Data Science Prerequisites

Instructeur : Packt - Course Instructors
Inclus avec
Expérience recommandée
Ce que vous apprendrez
Understand the core concepts of NumPy arrays, including their benefits over Python lists.
Gain proficiency in visualizing data using various types of plots in Matplotlib.
Learn how to manipulate and analyze data with Pandas for data science tasks.
Explore the basics of machine learning models such as classification and regression.
Détails à connaître

Ajouter à votre profil LinkedIn
avril 2025
6 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées


Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance

Il y a 6 modules dans ce cours
In this module, we will introduce the course structure and explain the available resources. This will help you navigate the learning process smoothly and maximize your course experience.
Inclus
2 vidéos
In this module, we will dive into NumPy, a powerful library for numerical computing. You'll learn how to work with arrays, solve linear algebra problems, and generate data, with hands-on examples to reinforce each concept.
Inclus
10 vidéos1 devoir
In this module, we will explore Matplotlib, a library used to create a variety of visualizations. You'll gain practical experience in generating charts and plots, helping you present data clearly and effectively.
Inclus
7 vidéos1 devoir
In this module, we will explore the Pandas library, a key tool for data manipulation. You will learn how to work with data frames, filter data, and create visualizations, enhancing your ability to analyze real-world datasets.
Inclus
7 vidéos1 devoir
In this module, we will introduce SciPy, a library built for scientific and technical computing. You'll learn about statistical distributions, convolution, and how to apply these techniques to real-world problems.
Inclus
5 vidéos1 devoir
In this module, we will provide a foundational overview of machine learning, including core algorithms like classification and regression. You’ll gain hands-on experience with code and learn how to apply these techniques effectively.
Inclus
11 vidéos2 devoirs
Instructeur

Offert par
En savoir plus sur Data Analysis
University of Michigan
Duke University
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Yes, you can preview the first video and view the syllabus before you enroll. You must purchase the course to access content not included in the preview.
If you decide to enroll in the course before the session start date, you will have access to all of the lecture videos and readings for the course. You’ll be able to submit assignments once the session starts.
Once you enroll and your session begins, you will have access to all videos and other resources, including reading items and the course discussion forum. You’ll be able to view and submit practice assessments, and complete required graded assignments to earn a grade and a Course Certificate.
Plus de questions
Aide financière disponible,